
1

Overview of the
High Level Architecture

and
Its Potential for Use in NASA Projects

Michael Reid
Computer Sciences Corporation

Mike.Reid@gsfc.nasa.gov

February 23, 2000

2

What is the HLA?

• The High Level Architecture (HLA) is a
standard framework that supports modeling
and simulation.

• “The HLA is the glue that allows you to
combine computer simulations into a larger
simulation.”1

1. F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer Simulation Systems: An Introduction to the High
Level Architecture, p. 1, Prentice Hall PTR, 1999.

3

Origins of the HLA

• The HLA was developed by the DoD’s
Defense Modeling and Simulations Office
(DMSO).

• It was designed to meet the DoD’s needs in
the modeling of large-scale systems such as
war games, weapons systems, and training.

4

Purpose of the HLA

• Facilitates the reuse of components
• Defines a common interface for individual

components
• Provides a framework for creating

simulation systems from a collection of
individual, separate distributed applications

5

Adoption of the HLA

• The DoD has mandated that all of its future
simulators must be HLA-compliant.

• An upcoming industry standard (IEEE-1516).
• Being adopted by other NATO defense

organizations.
• Expanding beyond the defense arena:

– Industrial process simulations
– Weather system modeling
– Games

6

What the HLA Can Bring To
NASA

• Many of NASA’s simulation and modeling
needs are similar to those of the DoD.

• NASA can take advantage of R&D already
completed and paid for by the DoD.

• Standardization reduces costs.
• Potential for reuse of DoD and other

IEEE–1516 compliant simulators.
• Facilitates collaboration with the DoD.

7

What the HLA Can Bring To
NASA (continued…)

• Fully supports distributed computing
• Supports collaborative development over

different sites
• Integrates applications running on different

platforms
• Scales up
• The future of simulations and modeling??

8

ISE Potential?

• NASA’s Intelligent Synthesis Environment (ISE)
Initiative seeks:†

– Rapid Synthesis and Simulation Tools
– Cost and Risk Management Technology
– Life-Cycle Integration and Validation
– Collaborative Engineering Environment

• Simulation, modeling, virtual environments,
shared product models

†National Research Council, Advanced Engineering Environments: Achieving the Vision, Phase 1, pp.
14−16, National Academy Press, Washington, D.C. 1999. [ISBN 0-309-06541-0].

9

HLA Terminology

• Federate
– An individual simulator application.

• Federation
– A simulation composed of two or more (often

many more) federates integrated together.

• Federation Execution
– A session in which a federation is running.

10

Components of the HLA

• A specification for an overall architecture and a
set of interfaces.

• A set of rules governing federate and federation
design.

• A standard application programming interface
(API).

• A Runtime Infrastructure (RTI) software package,
which implements the API.

11

Elements of a Federation

• A Federation Object Model (FOM)
– A common object model for data exchange

between federates running in the federation.

• The Runtime Infrastructure (RTI).
• Two or more HLA-compliant federates

running within the federation execution.

12

Elements of a Federate

• A Simulation Object Model (SOM)
– Defines the data objects shared with other federates.

• A binding to the RTI library (libRTI).
– Allows the federate to communicate with the RTI.

• An implementation of the FederateAmbassador.
– A set of callbacks implemented by the given

application, which allow the RTI to send information
and directives to the federate.

13

Communications

• Federates communicate within the federation
exclusively through the RTI.

• Means of sharing data
– Published data objects

• Essentially, data containers, which can be updated by the
owning federate, are visible to other federates, and persist
within the federation execution until deliberately destroyed.

– Interactions
• Broadcast messages, which can be received by other federates.
• Interactions do not persist after being sent.

14

What the RTI Does

• Integrates the component federates into a
running simulation.

• Handles all communications between
federates.

• Synchronizes the federation.
• Controls data distribution and visibility

within the federation.

15

Components of the RTI

• The libRTI library.
– Implements the HLA API.

• The rtiexec daemon.
– Directs federates to the correct federation execution.
– Can run more than one federation.

• The fedex daemon.
– Manages the federation.
– Integrates the federates within the federation execution.
– Handles communications between federates.

16

Federation Execution

rtiexec

libRTI

fedex 1

fedex 2

RTI
Federate 1

Federate 2

Federate 3

Federate 4

Federation 1 Federation 2

17

RTI Initialization Files

• The Runtime Initialization Data (RID) file.
– Defines runtime parameters.
– Specifies the network interfaces and protocols.
– Sets RTI system configuration parameters.

• The Federation Execution Data (FED) file.
– One per federation execution.
– Defines the object and interaction classes,

which are shared within the federation.

18

The DMSO RTI

• Available for FREE from DMSO.
• Supported platforms:

– Most major commercial UNIX platforms.
– Linux (for Intel-based systems).
– Windows NT

– VxWorks

• Language bindings:
– C++, Java, Ada, CORBA IDL

19

Services Provided by the RTI

• Federation Management
• Declaration Management
• Object Management
• Ownership Management
• Time Management
• Data Distribution Management

20

Federation Management

• Incorporates the Federation Execution Data (FED)
configuration file (the federation.fed file)
– Derived from the FOM
– Defines the data objects and interactions shared between federates

• Creates federations
• Joins federates to the federation
• Sets federation-wide synchronization points
• Effects saves and restores
• Resigns federates from the federation
• Destroys federations

21

Declaration Management

• Publication
– Federates “publish” through the RTI

information that they wish to share with other
federates

• Subscription
– Federates “subscribe” to information that they

wish to receive from other federates

• The RTI handles the communications

22

Object Management

• Provides for the exchange of data among federates
– Registration of new data objects
– Updating data objects
– Sending and receiving interactions

• Informs other, interested federates about new or
updated data objects and new interactions

23

Ownership Management

• Keeps track of which federates own which objects
– Federates “own” instances of data objects or attributes

within an instance of a data object

• Makes sure that only the owning federate may
update an objects attribute

• Transfers ownership between federates
• Makes sure that only the owning federate may

destroy an object

24

Time Management

• Synchronizes the federation
• Controls when, in logical simulation time, a given

federate receives interactions or notices of updates
to the attributes of subscribed data objects

• Controls when federates can advance their internal
clocks

• Provides for both event-driven and clock-driven
simulations

25

Time Management (continued)

• Federates are declared to be:
– Time Regulating

• Federate can set the pace of the advance of logical
time within the federation execution

– Time Constrained
• Federate can be throttled by time regulating

federates

– Both time regulating and constrained
– Neither time regulating nor constrained

26

Data Distribution Management
(DDM)

• Defines “routing spaces,” which define the
ranges of data distribution

• Allows federates to place conditions on
whether or not they receive interactions or
notifications of updates to object attributes

• Useful for defining the scope of visibility of
data

27

DDM Example

• An engagement between a surface warship and
two attacking aircraft is being simulated:
– The ship simulator contains a radar and a anti-aircraft

missile system
– The shipboard radar federate defines a routing space

based upon distance from the ship
– The aircraft federate publishes aircraft objects through

the RTI, which contain the locations of the aircraft
– The RTI will inform the radar federate of the aircraft

objects only if their locations fall within the radar’s
routing space

28

DDM Example (continued…)

500 km

700 km

A

B

The ship’s radar has a range of 500km.
Plan A is within that range, so the ship
detects it. Plane B is 700km from the
ship, so it is beyond the range of the
radar and the ship does not detect it.

300 km

29

Potential NASA Applications

• Spacecraft simulation
• Ground station simulation
• Natural Object Modeling

– Earth Science
– Astronomy

• Overall Space Missions

30

Spacecraft Simulations

• Spacecraft are collections of integrated
components.

• Simulators which model-specific
components could be integrated into a
federation to model the spacecraft.

• Simulated spacecraft components could be
used for multiple missions.

31

Ground Station Simulation

• Ground stations are collections of integrated
systems

• Aspects of data capture, commanding and
control, and science data processing can be
modeled and “play” together in HLA-based
simulations along with real components

• Would facilitate early integration and
testing

32

Earth Sciences

• The Earth is an integrated natural system
– Land masses, hydrosphere, cryosphere,

biosphere, atmosphere, magnetosphere, etc.
– Applications which model particular Earth

systems could be integrated together using the
HLA

• Data from Earth sciences spacecraft could
be used in the simulations

33

Astronomy

• HLA-compliant simulators could model
astronomical objects
– Could use data from spacecraft and ground-

based observatories

• Simulated Planets and spacecraft could
“play” together in simulations

• Distant astronomical objects could be
modeled as well

34

Overall Space Missions

• Objection: So what? Computer modeling
of spacecraft and natural objects is nothing
new. This has been done for years. Why
do we need the HLA?

• Answer:
– Individual, stand-alone simulators can be

integrated to form larger simulations
– HLA-compliance facilitates reuse

35

Space Mission Example

• Hypothetical Earth Science Mission:
– Telemetry generation
– On-board instrument data generation
– Orbit calculations (probably using COTS)
– Earth image generation in multiple bands
– Ground station receivers
– Ground station science data processing

• Generation of data products

36

Constellation Flying

• HLA allows unlimited replication of
federates.

• A federate which simulates a spacecraft
could be duplicated any number of times.

• HLA objects are extensible using
inheritance.

• Numerous, similar spacecraft could be
added to the same simulation.

37

Our R&D Project

• Develop a prototype, HLA-compliant space
mission simulator
– Two spacecraft flying in constellation in Earth orbit
– Loosely patterned after Landsat-7 and EO-1

• Federates:
– Spacecraft simulator
– Earth simulator
– Orbit calculator
– Ground station simulator
– Spacecraft tracking station simulator

38

Landsat-7 and EO-1

39

R&D Prototype

Landsat-7

EO-1

Earth Image

RTI

Ground
Station

Spacecraft

Earth

Receiving
Station

Orbit
Calculator

Tracking
Station

L7 Orbital Elem.
File

L7
Product
Fileset

L0 Product

40

The Prototype Demonstrates:

• The viability of the HLA technology for NASA
simulations

• The use of already collected science data in mission
simulations
– Landsat-7 science and orbital elements data

• The modular and distributed design concept
• The incorporation of existing software into an HLA-based

simulation
– Orbit calculation programs obtained from Flight Dynamics

41

More on the HLA

• Websites
– http://hla.dmso.mil
– http://www.ecst.csuchico.edu/~hla/

• Articles
– Dahmann, J., Calvin, J., Weatherly, M., A reusable architecture for

simulations. Communications of the ACM, 24, 9 (Sep. 1999).

• Books
– F. Kuhl, R. Weatherly, J. Dahmann, Creating Computer

Simulation Systems: An Introduction to the High Level
Architecture, Prentice Hall PTR, 1999. [ISBN 0-13-022511-8].

